Hi all !
I am currently building a model to use it onto my nano 33 BLE sense board to predict weather by mesuring Humidity, Pressure, Temperature, I have 5 classes of output.
I have used a kaggle dataset to train on it.
df_labels = to_categorical(df.pop('Summary'))
df_features = np.array(df)
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(df_features, df_labels, test_size=0.15)
normalize = preprocessing.Normalization()
normalize.adapt(X_train)
activ_func = 'gelu'
model = tf.keras.Sequential([
normalize,
tf.keras.layers.Dense(units=6, input_shape=(3,)),
tf.keras.layers.Dense(units=100,activation=activ_func),
tf.keras.layers.Dense(units=100,activation=activ_func),
tf.keras.layers.Dense(units=100,activation=activ_func),
tf.keras.layers.Dense(units=100,activation=activ_func),
tf.keras.layers.Dense(units=5, activation='softmax')
])
model.compile(optimizer='adam',#tf.keras.optimizers.Adagrad(lr=0.001),
loss='categorical_crossentropy',metrics=['acc'])
model.summary()
model.fit(x=X_train,y=y_train,verbose=1,epochs=15,batch_size=32, use_multiprocessing=True)
Then the model is trained, I want to convert it into a tflite model when I run the command convert I get the following message :
# Convert the model to the TensorFlow Lite format without quantization
converter = tf.lite.TFLiteConverter.from_keras_model(model)
tflite_model = converter.convert()
# Save the model to disk
open("my_model.tflite", "wb").write(tflite_model)
import os
basic_model_size = os.path.getsize("my_model.tflite")
print("Model is %d bytes" % basic_model_size)
<unknown>:0: error: failed while converting: 'main': Ops that can be supported by the flex runtime (enabled via setting the -emit-select-tf-ops flag):
tf.Erf {device = ""}
For your information I use google colab to design the model.
If anyone has any idea or solution to this issue, I would be glad to hear it !